A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
root
权限。
-bash/zsh: hwclock command not found #Debian apt-get install util-linux #Ubuntu apt-get install util-linux #Alpine apk add util-linux #Arch Linux pacman -S util-linux #Kali Linux apt-get install util-linux #CentOS yum install util-linux #Fedora dnf install util-linux #OS X brew install util-linux #Raspbian apt-get install util-linux #Docker docker run cmd.cat/hwclock hwclock
Linux 的时间分为 System Clock(系统时间,就是 Linux Kernel 中的时间)和 Real Time Clock(硬件时间,简称 RTC,即主板上有电池供电的时间)
hwclock 是时钟的管理工具。它可以:
hwclock [function] [option...]
The following functions are mutually exclusive, only one can be given at a time. If none is given, the default is --show. -a, --adjust Add or subtract time from the Hardware Clock to account for systematic drift since the last time the clock was set or adjusted. See the discussion below, under The Adjust Function. --getepoch; --setepoch These functions are for Alpha machines only, and are only available through the Linux kernel RTC driver. They are used to read and set the kernel’s Hardware Clock epoch value. Epoch is the number of years into AD to which a zero year value in the Hardware Clock refers. For example, if the machine’s BIOS sets the year counter in the Hardware Clock to contain the number of full years since 1952, then the kernel’s Hardware Clock epoch value must be 1952. The --setepoch function requires using the --epoch option to specify the year. For example: hwclock --setepoch --epoch=1952 The RTC driver attempts to guess the correct epoch value, so setting it may not be required. This epoch value is used whenever hwclock reads or sets the Hardware Clock on an Alpha machine. For ISA machines the kernel uses the fixed Hardware Clock epoch of 1900. --predict Predict what the Hardware Clock will read in the future based upon the time given by the --date option and the information in /etc/adjtime. This is useful, for example, to account for drift when setting a Hardware Clock wakeup (aka alarm). See rtcwake(8). Do not use this function if the Hardware Clock is being modified by anything other than the current operating system’s hwclock command, such as '11 minute mode' or from dual-booting another OS. -r, --show; --get Read the Hardware Clock and print its time to standard output in the ISO 8601 format. The time shown is always in local time, even if you keep your Hardware Clock in UTC. See the --localtime option. Showing the Hardware Clock time is the default when no function is specified. The --get function also applies drift correction to the time read, based upon the information in /etc/adjtime. Do not use this function if the Hardware Clock is being modified by anything other than the current operating system’s hwclock command, such as '11 minute mode' or from dual-booting another OS. -s, --hctosys Set the System Clock from the Hardware Clock. The time read from the Hardware Clock is compensated to account for systematic drift before using it to set the System Clock. See the discussion below, under The Adjust Function. The System Clock must be kept in the UTC timescale for date-time applications to work correctly in conjunction with the timezone configured for the system. If the Hardware Clock is kept in local time then the time read from it must be shifted to the UTC timescale before using it to set the System Clock. The --hctosys function does this based upon the information in the /etc/adjtime file or the command line arguments --localtime and --utc. Note: no daylight saving adjustment is made. See the discussion below, under LOCAL vs UTC. The kernel also keeps a timezone value, the --hctosys function sets it to the timezone configured for the system. The system timezone is configured by the TZ environment variable or the /etc/localtime file, as tzset(3) would interpret them. The obsolete tz_dsttime field of the kernel’s timezone value is set to zero. (For details on what this field used to mean, see settimeofday(2).) When used in a startup script, making the --hctosys function the first caller of settimeofday(2) from boot, it will set the NTP '11 minute mode' timescale via the persistent_clock_is_local kernel variable. If the Hardware Clock’s timescale configuration is changed then a reboot is required to inform the kernel. See the discussion below, under Automatic Hardware Clock Synchronization by the Kernel. This is a good function to use in one of the system startup scripts before the file systems are mounted read/write. This function should never be used on a running system. Jumping system time will cause problems, such as corrupted filesystem timestamps. Also, if something has changed the Hardware Clock, like NTP’s '11 minute mode', then --hctosys will set the time incorrectly by including drift compensation. Drift compensation can be inhibited by setting the drift factor in /etc/adjtime to zero. This setting will be persistent as long as the --update-drift option is not used with --systohc at shutdown (or anywhere else). Another way to inhibit this is by using the --noadjfile option when calling the --hctosys function. A third method is to delete the /etc/adjtime file. Hwclock will then default to using the UTC timescale for the Hardware Clock. If the Hardware Clock is ticking local time it will need to be defined in the file. This can be done by calling hwclock --localtime --adjust; when the file is not present this command will not actually adjust the Clock, but it will create the file with local time configured, and a drift factor of zero. A condition under which inhibiting hwclock’s drift correction may be desired is when dual-booting multiple operating systems. If while this instance of Linux is stopped, another OS changes the Hardware Clock’s value, then when this instance is started again the drift correction applied will be incorrect. For hwclock’s drift correction to work properly it is imperative that nothing changes the Hardware Clock while its Linux instance is not running. --set Set the Hardware Clock to the time given by the --date option, and update the timestamps in /etc/adjtime. With the --update-drift option also (re)calculate the drift factor. Try it without the option if --set fails. See --update-drift below. --systz This is an alternate to the --hctosys function that does not read the Hardware Clock nor set the System Clock; consequently there is not any drift correction. It is intended to be used in a startup script on systems with kernels above version 2.6 where you know the System Clock has been set from the Hardware Clock by the kernel during boot. It does the following things that are detailed above in the --hctosys function: • Corrects the System Clock timescale to UTC as needed. Only instead of accomplishing this by setting the System Clock, hwclock simply informs the kernel and it handles the change. • Sets the kernel’s NTP '11 minute mode' timescale. • Sets the kernel’s timezone. The first two are only available on the first call of settimeofday(2) after boot. Consequently this option only makes sense when used in a startup script. If the Hardware Clocks timescale configuration is changed then a reboot would be required to inform the kernel. -w, --systohc Set the Hardware Clock from the System Clock, and update the timestamps in /etc/adjtime. With the --update-drift option also (re)calculate the drift factor. Try it without the option if --systohc fails. See --update-drift below. -V, --version Display version information and exit. -h, --help Display help text and exit.
--adjfile=filename Override the default /etc/adjtime file path. --date=date_string This option must be used with the --set or --predict functions, otherwise it is ignored. hwclock --set --date='16:45' hwclock --predict --date='2525-08-14 07:11:05' The argument must be in local time, even if you keep your Hardware Clock in UTC. See the --localtime option. Therefore, the argument should not include any timezone information. It also should not be a relative time like "+5 minutes", because hwclock’s precision depends upon correlation between the argument’s value and when the enter key is pressed. Fractional seconds are silently dropped. This option is capable of understanding many time and date formats, but the previous parameters should be observed. --delay=seconds This option can be used to overwrite the internally used delay when setting the clock time. The default is 0.5 (500ms) for rtc_cmos, for another RTC types the delay is 0. If RTC type is impossible to determine (from sysfs) then it defaults also to 0.5 to be backwardly compatible. The 500ms default is based on commonly used MC146818A-compatible (x86) hardware clock. This Hardware Clock can only be set to any integer time plus one half second. The integer time is required because there is no interface to set or get a fractional second. The additional half second delay is because the Hardware Clock updates to the following second precisely 500 ms after setting the new time. Unfortunately, this behavior is hardware specific and in same cases another delay is required. -D, --debug Use --verbose. The --debug option has been deprecated and may be repurposed or removed in a future release. --directisa This option is meaningful for ISA compatible machines in the x86 and x86_64 family. For other machines, it has no effect. This option tells hwclock to use explicit I/O instructions to access the Hardware Clock. Without this option, hwclock will use the rtc device file, which it assumes to be driven by the Linux RTC device driver. As of v2.26 it will no longer automatically use directisa when the rtc driver is unavailable; this was causing an unsafe condition that could allow two processes to access the Hardware Clock at the same time. Direct hardware access from userspace should only be used for testing, troubleshooting, and as a last resort when all other methods fail. See the --rtc option. --epoch=year This option is required when using the --setepoch function. The minimum year value is 1900. The maximum is system dependent (ULONG_MAX - 1). -f, --rtc=filename Override hwclock’s default rtc device file name. Otherwise it will use the first one found in this order: /dev/rtc0, /dev/rtc, /dev/misc/rtc. For IA-64: /dev/efirtc /dev/misc/efirtc -l, --localtime; -u, --utc Indicate which timescale the Hardware Clock is set to. The Hardware Clock may be configured to use either the UTC or the local timescale, but nothing in the clock itself says which alternative is being used. The --localtime or --utc options give this information to the hwclock command. If you specify the wrong one (or specify neither and take a wrong default), both setting and reading the Hardware Clock will be incorrect. If you specify neither --utc nor --localtime then the one last given with a set function (--set, --systohc, or --adjust), as recorded in /etc/adjtime, will be used. If the adjtime file doesn’t exist, the default is UTC. Note: daylight saving time changes may be inconsistent when the Hardware Clock is kept in local time. See the discussion below, under LOCAL vs UTC. --noadjfile Disable the facilities provided by /etc/adjtime. hwclock will not read nor write to that file with this option. Either --utc or --localtime must be specified when using this option. --test Do not actually change anything on the system, that is, the Clocks or /etc/adjtime (--verbose is implicit with this option). --update-drift Update the Hardware Clock’s drift factor in /etc/adjtime. It can only be used with --set or --systohc. A minimum four hour period between settings is required. This is to avoid invalid calculations. The longer the period, the more precise the resulting drift factor will be. This option was added in v2.26, because it is typical for systems to call hwclock --systohc at shutdown; with the old behavior this would automatically (re)calculate the drift factor which caused several problems: • When using NTP with an '11 minute mode' kernel the drift factor would be clobbered to near zero. • It would not allow the use of 'cold' drift correction. With most configurations using 'cold' drift will yield favorable results. Cold, means when the machine is turned off which can have a significant impact on the drift factor. • (Re)calculating drift factor on every shutdown delivers suboptimal results. For example, if ephemeral conditions cause the machine to be abnormally hot the drift factor calculation would be out of range. • Significantly increased system shutdown times (as of v2.31 when not using --update-drift the RTC is not read). Having hwclock calculate the drift factor is a good starting point, but for optimal results it will likely need to be adjusted by directly editing the /etc/adjtime file. For most configurations once a machine’s optimal drift factor is crafted it should not need to be changed. Therefore, the old behavior to automatically (re)calculate drift was changed and now requires this option to be used. See the discussion below, under The Adjust Function. This option requires reading the Hardware Clock before setting it. If it cannot be read, then this option will cause the set functions to fail. This can happen, for example, if the Hardware Clock is corrupted by a power failure. In that case, the clock must first be set without this option. Despite it not working, the resulting drift correction factor would be invalid anyway. -v, --verbose Display more details about what hwclock is doing internally.
hwclock 显示硬件时钟报告的当前时间:
hwclock Fri 15 Oct 2021 03:35:07 PM CST -0.534618 seconds
hwclock 将当前软件时钟时间写入硬件时钟(有时在系统设置期间使用):
hwclock --systohc
hwclock 将当前硬件时钟时间写入软件时钟:
hwclock --hctosys 或者 clock --hctosys --------------- 上面命令中,--hctosys 表示 Hardware Clock to System clock